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Considerable work has been performed on providing a theoretical basis for the Kohlrausch-Williams-Watts
(KWW) and Havriliak-Negami{HN) relaxation functions. Because of this, several papers have examined the
“interconnection” of these two functions. In this paper, we demonstrate that, with achievable instrumental
sensitivity, these two functions are distinguishable. We further address the issue of the “universal” limiting
power laws and the ability to obtain the exponents associated with them. Finally, the stability and accuracy of
our numerical Laplace transform is demonstrated by comparison between functions with known analytical time
and frequency solutions. The stability of our algorithm indicates that the method of Alvarez and co-WBrkers
Alvarez, A. Alegra, and J. Colmenero, Phys. Rev4B, 7306(1991)] is an unnecessary approximation for
converting between the time and frequency domgi®163-182609)01026-1

[. INTRODUCTION been presented only for illustrative purposes and as such, are
a small subset of the total number of models that have at-
The nature of the glass transition has plagued researchetempted to give a theoretical justification to the empirical
for over a century. There are those who believe that there iIKWW relationship[Eq. (1)].
a thermodynamic transition underlying the kinetically ob- In the frequency domain, the Havriliak-NegarttiN)
served phenomena and there are those who feel that it iisquatioﬁ6
solely a dynamically based effect. One aspect of the glass
transition that each model tries to explain is the nonexponen-
tial long-time relaxation behavior. An empirical expression dun(w)= Ttionas’ (]
which is frequently utilized for fitting this behavior is the [1+(fon)?]
Kohlrausch-Williams-Watts (KWW) function (stretched s often used to model relaxation phenomena. Because of
exponentialt? this, several papers have attempted to demonstrate the
“equivalence” of the Havriliak-Negami and KWW equa-
k tions. Lindsey and Pattersbhexamined the ability of the
Prww(t)=1—exp — Tl |’ (1) Cole-Davidson equatiofEq. (2) with a=1] to approximate
the Laplace transform of the KWW equation. They state that
whererg is a characteristic relaxation time akds a param- numerical relationships could be obtained to relate the ap-
eter that has values ranging from 0 to 1. This equation waproximation of the KWW equation to the HN equation, how-
introduced in 1863 to describe mechanical creep in glassver they state that “Such a comparison is, of course, not
fibers and many theoretical models have been developed texact; it is presented only to ease the comparison process,
reproduce this equation. DiMarzio and co-workérarrived  particularly between older dielectric data analyzed using the
at this function by postulating potential wells in phase spacéCole-Davidson functiofCD) (introduced in 195§) and the
in which particles become trapped. The probability distribu-more recent Williams-Watts functiofused for dielectric re-
tion for these wells is an exponential decay in time, but belaxation measurements in 1969’ Additionally, they con-
cause of the distribution of varying depths of the wells, acluded that while the relaxation functiof€D and KWW
stretched exponential is obtained. Palmer and co-watkershave similar shapes, their distribution functions have very
and Muroz and co-workefs postulate hierarchically con- dissimilar shapes at long times.
strained models in which slow motions are constrained by a Alvarez, Alegra, and Colmener8'® used a method
necessity of movement of faster motions in a particular manbased on a distribution of relaxation times in order to avoid
ner. Shlesinger and co-workers base their theory on the exvhat they claimed were the problems with the Fourier trans-
istence of mobile defectavhich are unidentified to keep the form of the KWW function. They state that “Several meth-
model as general as possiplbat diffuse anomalously and ods have been used to Fourier transform the KWW function
quench localized excitatiods?® The defects in the and to interpret relaxation data from spectroscopies in the
Shlesinger model are commonly identified as “packets” offrequency domain. However, it is also well known that com-
free volume. Mansfief has developed a model of the glass putation of Fourier transform poses numerical problems
transition which incorporates these defects as well. Douglasriginating from cutoff effects which yield unwanted oscil-
and Hubbartf proposed a semiempirical model, based on dations, especially when treating real dat&.’Alvarez and
time-translation kernel which was consistent with stretchedco-workers used the mean-square difference as a measure of
exponential behavior, that was able to reproduce a number dfie compatibility, or equivalence, of the HN and KWW func-
the other properties of glass forméis this model (1-k) is  tions. For one of their comparisons, they claim that their low
a measure of the material inhomogengitfhe above have value of 1.8% 10 ° is very good, and state that one can
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therefore assume that the two functions are “equivalent.”where ®(t) is the time-domain response function to a unit
Empirical relationships were presented in this work whichstep excitation,¢(w) is the frequency-domain response
related the parameters of the KWW equation to those of théunction, ands is the complex variables=v+iw. As a re-
HN equation. The intent was to allow transformation be-sponse to criticisms of the numerical Laplace transform for
tween the time and frequency domain without resorting tatime-domain measuremerffsone of us has demonstrated
the Laplace transform. the stability of the numerical Laplace transfoffi?*In this

The statements made by Alvarez and co-workers, regardpaper, we will utilize the algorithm described in one of those
ing the Fourier transform, are correct for a fast-Fourier transpaperé* to transform our time-domain functions into the fre-
form. They are incorrect, however, when applied to a suitquency domain. Since this procedure is defined in terms of a
ably computed numerical Laplace transform that takeslesired tolerance, we chose a tolerance Bf1D © or less
account of the finite data window, which is the proper nu-for all of our transformed data, except for=0.1, for which
merical method for transforming time-domain data to thewe used a tolerance ofX10 ’. This guarantees that the
frequency domaif®2! This is evident, as one of us has suc- transformation error was sufficiently small so as to not sig-
cessfully demonstrated a numerically stable Laplace transificantly affect any results reported in this paper. The fre-
form which can be used to transform a time-domain functionquency window for the transformation, setting-1 s, was
(or time-domain datato its frequency-domain equivalent chosen such that the loss component of frequencies above
within an arbitrarily chosen tolerané&:* and below this window had negligible contributions to the

Havriliak and Havriliak’® in a manner similar to Alvarez  total area as a function of lggw. We would like to empha-
and co-workers, used statistical procedures to support thsize the fact that although we generated data to a frequency
claim that, for some ranges of the parameter, the KWW  as low as 1012 s~! we recognize that this time corresponds
and HN functions are the same. They cited the confidence an experimental timgreater than the recorded history of
interval for the exponents as proof of this assertion; howeverivilization. These curves are generated for illustrative pur-
unlike Alvarez and co-workers they did not give the standardyoses only. Values of 0.1, 0.3, 0.5, and 0.7 were chosen for
deviations of their fits. It is also stated later in their paper, ink to represent the total range of behavior of the KWW relax-
apparent contradiction to their earlier statement on configtion function.(Note that fork= 1.0, the KWW reduces to a
dence limits, that, because the limiting high/low-frequencyDebye function which has the known frequency-domain HN
behavior of the KWW function is best described by the CDparametersa=1.0 and3=1.0) We also want to mention
function, the KWW is not universal because Jonscher'shat in the previous paper on the Laplace transf&tihwas
studie$® on the limiting power-law behavior suggested thatdemonstrated that the algorithm was sufficient to transform
these specific limiting exponents are not universal. thek=1 case into the Debye function with an absolute error

In a recent papéf (henceforth referred to as Papgmle  of less than & 10°° over the entire range when set for a
examined the question of how unique the fit parameters argerance of X 10~ 6.

between two different representations of relaxation data over Two sets of curve fits to the transformed data were ob-
limited frequency ranges. In that work, we also addressed th@ined: one to the imaginary component O(ﬂyA) and one
issue of equivalence of two functions and the proper measur§imultaneously to the real and imaginary componéfitt$).

of the ability of one function to approximate another. In thisThe data were treated as if they were obtained from a time-
work, we will re-examine the ability of the HN equation to domain dielectric spectrometer. The data obtained from the
approximate the Laplace transform of the KWW function | gplace transform were in the form of the complex fre-
over the entire range of Significant variation of the loss Com'quency dependent dielectric constang® (w) = 6,(0))
ponent of the transformed data with careful consideration of;-j ¢”(), wheree’ ande” are the real and imaginary com-
the measure we presented in Paper I. In this paper, it will b@onents. Therefore, curve fits were performed to the follow-
demonstrated that, with achievable instrumental sensitivitying equation:

the two functions are distinguishable, and we will point out

some logical inconsistencies in the work of Alvarez and (€0— €x)
co-workerd®® and Havriliak and Havrilia® Furthermore, € (w)=(€g— €) Pppn(®)+ €= e,
we will examine the limiting power-law behavior of these [1+(fw7)?]

functions and will show how broad a frequency range must 4

be covered to determine this limiting behavior. From this, we,here (€o— €..) is the dispersion strength ard is the high-

can demonstrate that.for a Wlde_ range of values of th‘?requency dielectric constant. Note that aftes €..), a, S,
KWW exponentk, empirical determination of both the low- 54 "\vere obtained for fit A, was obtained from a linear
and high-frequency power laws is very difficult. least squares to the real component, fixing the aforemen-
tioned parameters. The fits to Eg) were performed with a
Il. PROCEDURE nonlinear least-squares routine based on the Levenberg-
Marquardt algorithrf? with unity weighting and double pre-
cision arithmetic.
A time to frequency domain transformation is accom- A point density (i) Of ten points per decade was cho-
plished through the Laplace transform: sen to sample the frequency-domain data. This sampling
density did not affect our ability to approximate the con-
—dd(t) tinuum limit to the fitting of one function to the other. This
T}dt’ (3) can be demonstrated by comparing the fit parameters for a
KWW function with k= 0.5 obtained for data with 5, 10, and

A. Numerical Laplace transform and fitting of data

d(w)= lim fwexp(—st)

Re(s)=0",Im(s)=w" °
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20 points per decade. The data were generated over a frprocess. If we then treat the tails by their limiting power-law
quency range of X104 Hz to 1x10° Hz. The HN  behaviors through suitable choices fo5 and ws, we obtain

a (B) exponents obtained for these three point densibes the following for the low-frequency limit(for y>0, w;
10, and 20 points/decagdevere 0.8089(0.5363, 0.8086 < w,<1):

(0.536%, and 0.8084(0.5369, respectively; the values ob-

tained for x?/ng. were 3.878k10 4 3.8676<10 4, f 2 Yde
3.8618< 104, respectively, wherg? is defined as — (w7 . .
y Y PPy S POATE R Ry ®
X'=2 (yi=¥)?. ) and for the hi imi :
4 gh-frequency limifor >0, w;>w;>1):
In the above equatiory; is the value of the function at a J""4w,5dw
frequencyf;, §/i is the value of the model approximating the i w3
function at the same frequency, aNds the number of data lim (w4—wq) ©
points. w4
which is given for6=1 by
B. Choice of metric
IN(w4/ws)
As we pointed out in Paper |, when examining the ability (wa—wy) =0, (10
of one function to represent another function, the standard wg—e 104 L
deviationo is not a good measure, especially for relaxationgng for s#1 by
functions. A relaxation function in the frequency domain
evolves from unity to zero for the real component and from (gt = (wy)t?
zero to a maximum of less than 0.5 and back to zero for the lim (0s—w)(1-0) =0. 1D

W —®

imaginary component over a finite frequency range. There-
fore, if a wide enough frequency range is chosen, all relaxTherefore, ifw, is chosen to be sufficiently small arng is

ation functions will agree to within an arbitrary tolerance. chosen to be sufficiently large so that the power-law approxi-
However, thel,, norm (the maximum deviationis not sig-  mation is reached and that there is a negligible contribution

nificantly affected over a sufficiently wide frequency range.to the total relaxation, then the upper bound@his given
We will demonstrate this in the discussion that follows. by

Since we are examining the ability of one exact function

to approximate another exact function, the standard deviation waf 24

o loses any statistical meaning. We stress that we are not s (w)"da

fitting to a set of data that can be represented by an exact 02=(w—w). (12
4~ W1

model plus a random deviate with a sampled population. To
emphasize this, henceforth in the paper we will refestas  Therefore,o2 can be made arbitrarily small by the appropri-
the mean-squared deviation rather than as the variance aage choice of frequency window. The same conclusion can be
will define it as applied to the real component by replacing the Ilow-
frequency error term in Eq8) by (1— w"?)?2.

The difference between the maximum deviatidn,,,
(whereA p.=sudf,—f,|, with f; andf, the two functions
i being comparedand o will be further demonstrated by
To demonstrate the reason whyis not a good measure, We fitting the HN function to the KWW transformed data over a
consider the mean-squared deviatiof of two functions, frequency range sufficient to describe the relaxation, and
with f(w) being the larger of the two function&or sim-  hap increasing the frequency range and refitting the data. It
plicity, we are settlng; 1 sinthe discussion that follows. || be shown that the data with the smaller frequency range
The upper bound on“ is then given in the continuum limit - a5 approximately the same parameters and the same maxi-
to be mum deviations, however the standard deviation of the in-

creased frequency range is smaller.

ot=—. (6)

w4
J f(w)’dw
o2 w1 IIl. RESULTS AND DISCUSSION
(w4~ 1)

A. Introductory remarks

B 2 “3 2 “4 2 Following our discussion in Sec. Il B as to whhy,., is a
Ll Hw) dw+ Lz f(w)dwt Ls f(w)de better measure tham? of how well the KWW function is
= (0r—wD) , (7)  approximated by the HN function, we consider a fit of the
HN equation to the imaginary component of the transformed
where the three integrals on the right-hand side of @y. KWW data for k=0.5 for two different frequency ranges
refer to the low-frequency tail, central region of the disper-(1x10° s7! to 1x10® s! and 1x10* s! to 1
sion peak, and the high-frequency tail. It is clear that thex 10’ s™1). The value foro? decreases from 3.4810 2 to
integral for the central region is bounded for a relaxation3.07x 10 2 while A, Stays constant at a value of 7.47
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FIG. 1. Plot of imaginary component for the Laplace trans- FIG. 2. Cole-Cole plot of the Laplace transformed KWW func-

formed KWW function withk=0.5. Note that the line that is shown tion for values ok=0.1, 0.3, 0.5, and 0.7. The symbols on the plot
connecting the data points consists of straight line segments. correspond to the_ beginning of a decade, Whereas the line is passed
through all 10 points per decade. The cross is placegratqual to

x 1073, indicating that whiles? would indicate a better fit, unity.
Aoy indicates no change in the “goodness™ of fit. As fur-
ther confirmation of our above discussigd is unchanged  those of Havriliak and Havriliak except for those obviously
by the addition of 30 square residuals. _ ~inerror(in their Table | they have two headings for 1.0,

This, and our discussion in Paper | on the inapplicabilityhoth of which are obviously not fok=1.0) and agree rea-
of statistics to numerical approximations, demonstrates SOMgynably well with those of Alvarez and co-workefs The
of the crucial flaws in the analyses performed by Alvarez andjifterences between the parameters can be attributed to dif-
co-workers and by Havriliak and Havriliak. Their conclu- ¢orences in the ways in which the functions were generated,
sions regarding .the goodness of fit derived from the IowhOW the sampling density was chosen, and the range of the
values of, are incorrect for the reasons we have demony.., ‘e examined the method of transformation of Havril-
strated. In the following section, using a properly Sensitive, .\ and Havriliak® for the KWW function, Cole-Davidson
measure, we will critically analyze the ability of the HN '

function to approximate the KWW function. Iﬁnc:_l'on, .?ngg se_rll_ei (t)f dlsfcrete hexdp(?nentlals. In all c?ses,
Before presenting the results from our curve fitting, we''® Havriiak-Ravriiak transiorm had farger errors on the

wish to make a few comments about the transformed KwwoW-frequency side of the relaxation. This is consistent with
data. In Fig. 1 we have plotted a typical loss curve for thethe_dlscre_pan_ues observgd bet_vve(_an our HN parameters and
transformed KWW data. To demonstrate the smoothness df€irs, which is observed in their higher values tarNone
the data we have used a straight line interpolator between o@f these discrepancies, however, affect our conclusions.
data points. It is readily apparent that the data sufficiently In Fig. 3, we have plotted the residuals= (&
describe the function. This is in accord with Ref. 24 where—¢/,,) as a function of angular frequeney for the fits to
the Cole-Davidson function fo=0.5 was compared with the imaginary portion of the transformed KWW data offly
the known analytic answer and the maximum error was 0.5
% 10~ © for a specified tolerance ofX10 5. 0.010
Figure 2 is a Cole-Cole plot of the Laplace transform of 1
the KWW functions for values dk ranging from 0.1 to 1.0.
Several things can be observed from this plot. KAs de- 0.006
creased, the maximum loss is decreased. The characteristi  0.004
relaxation time is shifted frome’=0.5 atk=1.0 to ¢’
=0.6 atk=0.1(in the plot, we have put a cross whewe is z
equal to unity. The number of decades required to describe
the entire relaxation process increases with decreasing expc
nent (in the plot, we have put a symbol on the curve for 3, 0, ]
every decade Finally, it should be noted that dsis de- .
creased from 1.0 to 0.1y 7 at the loss maximum is shifted -0.006 4 )
from 1.0 to 0.6 Hz. This demonstrates that the use of the  -0.008 1
method of Alvarez and co-workéfs'to perform a time to B
frequency domain transform is unnecessary because of th 10 10°® 10 10° 10* 10° 10"

stability of our numeric Laplace transform. )
[0

—0—k=0.1 |1
—o—k=0.3
F—a—k=0.5
—o—k=0.7

0.008

0.002 4
0.0004
-0.0024 ®

kww ™€ N )

(e

B. Bquivalence of the HN and KWW functions FIG. 3. ResidualsA =(sxww—ern) @s a function of angular

Table | shows the results of our fits of the HN equation tofrequency for the fits performed to the imaginary component of the
the transformed KWW data. Our parameters are close tbaplace transformed KWW data.
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TABLE I. Results of fits to the Laplace transformed KWW data with the Havriliak-Negami equation.

k Frequency range € (€0 €) a B 7(s) X2 Fit @
0.1 10 12-107° s —0.0145 1.03 0.229 0.342 180 6830°* i
—0.00471 1.02 0221 0.383 63.8 76803 ri
0.3 106-10% s —0.0125 1.03 0.595 0.404 6.46 18103 i
—0.00382 1.01 0.594 0.428 532 60003 ri
0.5 10%-10 s? —0.0106 1.02 0.810 0516 2.73  1210°° i
—0.00311 1.01 0.816 0.528 258  3:880 ° ri
0.7 10%-1¢F s? —0.00679 1.01 0.924 0673 168 5x%90* i
—0.00207 1.00 0929 0.680 165 16003 ri
1.0 104-10* st —2.98x10°8 1.00 1.000 1.000 1.000 2.260 2 i
5.41x10°8 1.00 1.000 1.000 1.000 6.680 2 ri

3 indicates a fit to the imaginary component only, while ri indicates a fit to both the real and imaginary
components.

A). A similar plot is shown in Fig. 4 for the fits performed sented by both the HN and KWW functiofsee Tables | and
simultaneously to the real and imaginary portions of thell for the fitting result3. In this case, fitting one to the other
transformed KWW datdfit B). The summary of these plots should give an exact fit, however, there will be significant
can be found in Table I, where we ligt,,,, for each value residuals due to round off errors that will act as a random
of k. (N.B. For each of the twa plots, the line is a spline to deviate. Our computed value fer?, the mean-squared de-
the data and the symbols are plotted for every fourth dataiation, is 2< 10”7 with A,,,,=5X10"’. These are expected
point) From this data, it is apparent that the lowest value forvalues for the truncation error for six digit representations.
Amax is 3.02<10°3, excluding the case where=1, for ~ The computed exponents and 8 are equal to unity as ex-
which the HN function has a known analytical solutiom ( pected.
=1 and B=1). This difference is resolvable by the time
domain spectrometéf, which has a relative sensitivity of

less than & 10 2 of the total dispersion strength, and for ] . ) o
commercially available inductance-capacitance-resistance 10 examine the ability to determine the limiting expo-
bridges. Therefore, the conclusion of Alvarez andnNents, using the method of Paper I, we locally fit the imagi-

C. Limiting power-law behavior

co-workerd®'%and Havriliak and Havriliak® that under cer- nary portion of the transformed KWW function to the fol-
tain circumstances the two functions are indistinguishable, i{oWing power-law equation as a function of normalized
incorrect. frequencyx (X=w7):
As a further demonstration of our results, we consider the _ _
case of an exponential decaly=€ 1) which is exactly repre- TABLE II. Maximum absolute value of the residual a4 as a
function of KWW exponenk.
0015 LN DL O N D N R B N BN BN BN BN DN BN BN N BN BENN NN B ) -1 -1 -1 .. a
0 012- k=041 | k @min (S ) ®max (S ) Amax WA o (S ) fit
0.009 4 —o—k=0.3 | ] 0.1 1x107? 1x10®° 3.02x10°% 1.0x10°%
] k =0, —3 — 4 .
0.006 ] —2— k=05 3.88x10 1.5x10 ri
(2 0.0031 03 1x10°  1x102 6.98<10°3 1.2x10°3 |
v 0.0005 1.01x10°2  4.0x10°2 i
S -0.0031
o -0.006 05 1x10°8 1x108  7.47x10°3 0.15 i
< s .
0.009 ] 1.10x 10 0.12 ri
0.0121 ) 07 1x10°  1x10° 552x10°%  0.25 i
0.05+rrrrrrrrrro T T T T T T 7.73x10°3 0.25 ri
10" 10° 10 10° 10* 10° 10"
o™ 1.0 1x10* 1x10°  4.8x10°7 0.4 [
5.1x 107 1.5 ri

FIG. 4. ResidualsA = (sikww—¢nn) @S @ function of angular
frequency for the fits performed simultaneously to the real andl indicates a fit to the imaginary component only, while ri indicates
imaginary components of the Laplace transformed KWW data.  a fit to both the real and imaginary components.
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LI BN B LR RL N | LN L L L LR L TABLE Ill. Approximate high- and low-frequency limits for
14 4 limiting power-law behavior as a function of the KWW parameter
k.
{5 k Low w7 limit High w7 limit Decades
qg; 0.1 1x10° 1 1x 10 30
X 0.3 1x104 1x10 11
£ 04 s || ) 0.5 2x10°8 1x10° 9
g |l=—k=01 2 SeEa— 0.7 1x1072 1x10* 6
2 |Fe—k=03 e
| ——k=05
—e—k=0.7 This is unlikely to be achievable under normal experimental
el conditions. Also, over these required ranges in frequency, it

is expected that there will be other relaxations that will ap-
pear and ‘“corrupt” the limits of the relaxation process of
interest. Therefore, the utility of a universal power law be-

FIG. 5. Apparent exponeng as a function of normalized fre- COMes suspect in these cases.
quency.

10" 10™ 10° 10* 10° 10* 10® 10" 10"

T

D. Implications on theories of relaxation

"(x) = y
€'(X)=A+BX, (13 In the above discussions, we have examined the ability of
with A and B in the above equation being constants. Thregh® HN function to approximate the KWW function without
points were spaced as a geometric progression with mult@ny discussion of the underlying physics. The ability, or in-
plier k. If Eq. (13) has values ok, , X,, andxs equal tox; ability, of one of these functions to approximate the other’s

kx,, andk?x,, then the limiting exponeng can be evaluated pehavior _doe_s_ not discount thei_r use as in_terpolating func-
tions; their utility should be considered individually for each

as case examined. Although theories have been put forth to pre-
0 dict the functional forms of both the KWW and HN func-
y= (ﬂ o (14)  tions, the “true” function is uncertain and could lie else-
e —ey) In(k)’ where. Furthermore, it should be realized that

microscopically based theories which predict one or both of

wheree] corresponds to the loss at a normalized frequencyhese macroscopic functional forms are not necessarily valid
X;. The results of these fits are shown in Fig. 5. As wasproof of the “correctness” of a given form. The difference
expected from asymptotic evaluation of the Fourier transbetween the observable macroscopic relaxation and the local,
form, the limiting low-frequency exponent was unity for all microscopic relaxation behavior has been the subject of
four values ofk examined and the limiting high-frequency much discussion, starting with Deb¥eand his model for
exponent was- k. Havriliak and Havriliak® showed this for  rotational diffusion. A more modern development is that due
the case ok=0.5. to Fulton®*3*who references much of the early work that

Several things need to be noted from this. The first, is thatvent beyond Debye. All of these results indicate that there
since the limiting exponents for the HN equation ar@and  can be significant differences between the macroscopic and
—ap, for the low- and high-frequency limits, respectively, microscopic behavior, at least as comparable to those shown
for equivalence of the two functions with respect to limiting between the KWW and HN functions in this work.
power-law behavior,a=1 and B=k. For k=0.5 andk
=0.7, B is close to, but not equal t&. For k=0.1 andk
=0.3, B is very different fromk. Furthermore, in none of the
four cases isx=1. Therefore, it is clear that the two func-  We have demonstrated, contrary to earlier conclusions by
tions arenot equivalent Alvarez and co-worker§!® and Havriliak and Havrilial®

Further important information is obtainable from Fig. 5. that the KWW and Havriliak-Negami equations are distinctly
Jonscher has postulated a universal dielectric response basdifferent functions, which are distinguishable under achiev-
on a limiting exponent lavt®3* From our plot, we can deter- able experimental conditions. It has been shown that the
mine how low or high a frequency must be measured for thenaximum residualA ., is a far more sensitive measure of
limiting behavior to be reached. Table Il is a listing of this the ability of one function to approximate another than
information. It is readily apparent that f&= 0.1 the limiting  Additionally, it has been stressed that it is improper to use a
low-frequency power law is unattainable, since a time on thestatistical analysis to compare two exact functions; this has
order of X 10° y would be required for the low-frequency not been an analysis of the ability of one function to fit
limit, and the high-frequency limit falls in the ultraviolet experimental data with a corresponding random deviate.
region of the spectrum. The other exponents are theoretically We would like to point out, however, that the results of
attainable with commercially available instruments, or bythis paper were similar to those in Paper I. In that work, we
combinations of several commercially available instrumentsdemonstrated that two distinct functions could be made to
However, if both exponents are desired, 11, 9, and 6, decadessemble each other under the appropriate conditions.
must be obtainable fok=0.3, 0.5, and 0.7, respectively. Clearly, if the experimental data are obtained with uncertain-

IV. CONCLUSIONS
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ties greater thar ,,, then the two functions will be indis- empirical functions, and the fact that a given theory repro-
tinguishable. However, if the uncertainty is greater thanduces their behavior does not necessarily indicate that the
A max, then in addition to the difficulties which we mentioned theory is correct, or that these functions are natural laws. As
about obtaining the limiting power-law exponents, it is ap-we stated in Sec. 1lID, a microscopic theory which repro-
parent that any values obtained for these exponents will beuces these functions may not be valid due to the difference
questionable as the limits of the KWW and HN are quitebetween the microscopic and macroscopic responses.
different. To reiterate a point which we made in Paper |, the As a final point, we have shown the stability of our nu-
final appeal must be made to the measured data and the d8eric Laplace transform for the KWW function for a wide
sociated uncertainties. If one of these two functions cannotange of values o, and hence the use of the approximations
fit the data, then the issue of the difference between the fun®@f Alvarez and co-workers and that of Havriliak and
tions disappears, otherwise extreme care must be taken Iavriliak®® is unnecessary.
comparing the results of the fits and conclusions should be
based on proper estimates of the total uncertainty.

The utility of the KWW and HN equations as interpolat-
ing functions is not being disputed by this work. However, it C.R.S. would like to acknowledge the financial support
should be recalled that both the HN and KWW equations ardrom the NIST-NRC.
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